
Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Migrating the Ciena SIM Environment into the Cloud -
(Applying LTTng tracing towards performance analysis)

Octavian Stelescu

December 2016

Ecole Polytechnique - Progress Report Meeting - December 2016

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 2

Agenda

1

2

3

4

Outline of 6500 packet optical switch SIM

Performance bottleneck in the cloud

Brief analysis using LTTng

Concluding remarks

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 3

Ciena is moving our 6500 SIM into the cloud

At Ciena we are taking a direction to push some areas of our operations into
the cloud including our 6500 product simulator.

• Moving the simulation infrastructure is driven by many factors:
• Cost reduction, space savings, flexibility, speed to create virtual workstations for

designers

• Leveraging cloud virtualization technologies is beneficial to improving Ciena's
efficiency in multiple areas:

• Design, testing, automation
• Customer facing projects (Ciena Emulation Cloud): customers testing rest APIs in

the cloud to manage our equipment
• Hibernating large network configurations. Networks which can take ~ 1 hour to

start could be recovered on the fly by waking up a VM

• There is a significant challenge involved in bringing the simulator into the
cloud and striving to achieve near bare metal performance

Where are
you taking

me?

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 4

Where do we use our sim?

• Testing our software without the need for target physical hardware

• Creating virtual networks for certain interworking functions

• Bounds Checking on the compiled software syntax

• Simulator back end for our nodal manager / network manager (BluePlanet)

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 5

Ciena 6500 Product Simulator

Intel® Xeon® Processor E5-2690 v4, 14 cores, 64GB RAM

RH 7.2 – Kernel 3.10.0-327.13.1.el7.x86_64

VM - OneOS

Virtual Bridge

VM - OneOS

VxSim
Native Process

• The basic architecture of our sim:

• Running RHEL 6.3 – 7.2 for our
host operating system

• VxSim is used for our shelf
processor as well as some of our
line cards

• Our packet optical cards which
originate from different Ciena
products appear as qemu-kvm
Linux based virtual machines

• These are tied together through our
python SIM script (GSIM), Linux
virtual interfaces, as well as our own
software which forwards packets
between the VxSim and the OneOS
world

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 6

Ciena 6500 Product Simulator

• The Ciena cloud is built on top of openstack
• At a low level we have collection of Fedora Cloud workstations
• On each Fedora Cloud workstation we can have multiple RHEL 7.2 VMs to host our SIM

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 7

Ciena 6500 Product Simulator on single node in the cloud

Intel® Xeon® Processor E5-2690 v4 - 14 cores - 64GB RAM

RHEL 7.2, Kernel 3.10.0 x86_64, 4 VCPU
cores, 16 GB RAM

Fedora 7.2 Kernel - 4.8.6

Layer 1
VM hosts

Layer 0
(HOST)

Layer 2
VM OneOS

RHEL 7.2, Kernel 3.10.0 x86_64, 4 VCPU
cores, 16 GB RAM

VM - OneOS

VxSim
Native Process

VM - OneOS

VxSim
Native Process

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 8

TOP running on a designer workstation

• A single OneOS VM uses 10 X CPU than our VxSim based cards
• In this example we are simulating two nodes (2 VMs and one VxSim process per node) for a bare bones shelf
• ome_sp2_vx_appl is the shelf processor
• qemu-kvm VMs are packet optical cards

OneOS

VxSim

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 9

TOP running on VM workstation in the cloud

~ 8 X CPU usage
for each OneOS VM

• Moving our sim into a designer workstation in the cloud we see a massive jump
for CPU usage for each OneOS VM

• OneOS VMs use 8X more CPU resources / core
• Our VxSim processes have the same CPU resource usage

VxSim is the same

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 10

Optimizing Virtual Machine Performance

From Libvirt / Virt-Manager
Avoiding unused devices

CPU performance options
Avoiding CPU overcomittment, copying CPU host
configuration, single thread single core and mutiple
sockets for a VM, CPU pinning to a NUMA node

DISK
SSD for the host, virtio drivers for VMs

Tuning Tools
tuned -> tuning profile delivery mechanism that
adapts Red Hat Enterprise Linux for certain workload
characteristics

Networking
Virtio, virthost-net

BLOCK I/O
Cache, threads, disk I/O throttling

Nested VM specific
Nested virtualization, VMCS shadow, VIRT-APIC

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 11

TOP running on VM workstation in the cloud with VMCS shadowing

• After enabling nested virtualization and VMCS shadowing the CPU usage drops
• Enabling nested virtualization and VMCS shadowing drops the CPU usage to approximately half
• We are still around 4X more resource intensive on the CPU when running on a designer workstation

~ 4 X CPU usage
for each OneOS VM

VxSim is the same

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 12

CPU as the main bottleneck towards SIM virtualization in the cloud

It becomes apparent very quickly that our SIM experiences a CPU bottle neck in the cloud
as a consequence of nesting

• To investigate this further we looked at a SIM network configuration in a steady state (the
simulated network is up and hanging around)

• On a standard designer workstation a single OneOS VM uses ~ 10% / CPU core
• Running in the cloud we are at about ~ 50% / VCPU core
• Without hardware features (VMCS shadow) that number jumps to ~ 80% VCPU core

• In our investigation we only had a redundant shelf with only two nodes, as we add more
nodes we increase the number of OneOS VMs and the performance severely degrades

• We need to further understand this overhead and minimize it (if possible)

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 13

Some terminology…

• A hypervisor or virtual machine monitor (VMM), such as libvirt is a piece of computer software, firmware or hardware
that creates and runs virtual machines.

• Hypercalls only exist with hardware assisted virtualization (specialized x86 instructions)
• Similar to an API between the VM and the hypervisor
• Privileged instructions are implemented by hypercalls to the hypervisor.
• VMCS is virtual machine control structure which is used to save the state of the VM/HOST as we transition from

executing the code of the VM to that of the host

main() do_work() main()

Guest

Host hypercall

doSomethingOnHost() doSomethingOnHost()

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 14

Nested VM Architecture for VMX

R R R R W W

VMCS

RHEL 7.2, Kernel 3.10.0

Fedora 7.2 Kernel - 4.8.6

Layer 1
VM host

Layer 0
(HOST)

Layer 2
VM OneOS VM - OneOS

ROOT VMM

GUEST VMM

TRUE VMMRHEL 7.2, Kernel 3.14.0

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 15

Nested VM Architecture for VMX (continued)

R R R R W W

VMCS
ROOT VMM

GUEST VMM

TRUE VMM

• In a single-level architecture, executing any
privileged instruction by any level of nested
VMs returns to the host hypervisor (L0).

• The VM hypervisor (L1) has the illusion of
running the code of the nested VM (L2)
directly on the physical CPU

• Privileged instructions of nested VMs are
handled by the highest privileged level L0

• The execution of any hypervisor level or VM
privileged instructions causes the L0 trap
handler to be executed

• This VMX emulation can go to any level of
nesting

Layer 1
VM host

Layer 0
(HOST)

Layer 2
VM OneOS

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 16

VMCS
SHADOW

Nested VM Architecture for VMX (continued)

R R R R W W

ROOT VMM

GUEST VMM

TRUE VMM

• To handle a single L2 exit, L1 does many things:
read and write the virtual machine control
structure (VMCS), disable interrupts, etc

• Those operations can trap, leading to exit
multiplication

• Exit multiplication: a single L2 exit can cause
40-50 L1 exits!

• There is an optimization which allows us to
execute a single exit faster and reduce
frequency of exits

• This is VMCS shadowing. VMCS shadowing
directs the VMM VMREAD/VMWRITE to a
VMCS shadow structure.

• This reduces nesting induced VM exits.

Layer 1
VM host

Layer 0
(HOST)

Layer 2
VM OneOS

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 17

Tracing with LTTng

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 18

Ciena 6500 Product Simulator in the Cloud – Single Openstack node

Intel® Xeon® Processor E5-2690 v4 (VMX - Virtual
Machine Extensions), 16 cores, 192GB RAM

RH 7.2 Kernel 3.10.0 x86_64Layer 1

Layer 0

Layer 2

RH 7.2 Kernel 3.10.0 x86_64

• Without access to the bottom layer L0 of the
cloud, we created a nested configuration
representing an isolated node in the cloud

• To investigate the execution flow of nested
VMs we used the following setup:

• Layer 0 Host – RHEL 7.2
• Layer 1 VM Host – RHEL 7.2
• Layer 2 OneOS – Linux

• For all intensive purpose this configuration
resembled our setup in the cloud

.

VM - OneOS

OneOS Kernel 3.14, 2 VCPUS, 2GB RAM

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 19

Execution Flow analysis of OneOS: L2 -> L1 -> L0

L0: Host Hypervisor

L1: VM Hypervisor

L2: OneOS
• We traced the execution flow of all levels finding out when the code of the host

hypervisor, the VM hypervisor, and the nested VM is executing

• The code of L2 (OneOS) runs for a small period of time and then it exits to the
L0 (host) to handle a privileged instruction.

• Most of the time, code of L0 and L1 execute and then for a small amount of
time code of L2 executes.

• For further investigation, we look at the exit reason for each exit from L2 to L0.

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 20

Execution Flow analysis of OneOS: L2 -> L1 -> L0

L0: Host Hypervisor

L1: VM Hypervisor

L2: OneOS
• Each vm_exit has a reason which is written in the exit_reason field.

• For example, if a syscall_read executes in the VM, it causes a vm_exit with exit
reason of 30, which is I/O instruction.

• The frequency of each different exit reason could represent a lot of information
about the instructions running in the VM.

• A high frequency of exit reason 30 shows intense I/O activity in a VM.
.

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 21

Execution Flow analysis of OneOS: L2 -> L1 -> L0

L0: Host Hypervisor

L1: VM Hypervisor

L2: OneOS

Use the bounce code

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 22

Execution Flow analysis: : L1 -> L0

L0: Host Hypervisor

L1: VM Hypervisor • The above shows the execution flow of the L1 layer traces on L0

• Majority of exit reasons are 56 which corresponds to APIC calls

• It looks more than likely that APIC is being emulated for nested VM L1

• Linux kernels above 4.0 introduce virtual APIC for nested VMs reducing the
overhead associated with emulation

.

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 23

From the 4.8 kernel source:
Linux/arch/x86/kvm/vmx.c
1313
1314 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1315 {
1316 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1317 }
1318
1319 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1320 {
1321 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1322 }
1323
1324 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1325 {
1326 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1327 }
1328
1329 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1330 {
1331 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1332 }
1333
1334 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1335 {
1336 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 24

Profiling nested qemu-kvm with perf

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 25

Profiling nested qemu-kvm with perf

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 26

Profiling nested qemu-kvm with perf

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary. 27

What next?

• We’re creating a lightweight SIM specific image for the L1 VM host which
will have the latest nested virtualization kernel improvements with a
smaller footprint

• Use LTTng to reduce any overhead that may be non specific to
virtualization but impacting the performance of the product code

• We are looking to align views between VM exits and OneOS code so we
can sync the execution of OneOS code along with the host

• Tracing the early boot of our OneOS with a bare metal tracer

28Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Thank You

